ASPECTS OF HERPETOFAUNAL DISEASES AT TWO NATURAL AREAS IN MARYLAND AND VIRGINIA

by

Lauren Fuchs
A Thesis
Submitted to the
Graduate Faculty
of
George Mason University
in Partial Fulfillment of
The Requirements for the Degree
of
Master of Science
Biology

Committee:

_____________________________ Dr. Larry Rockwood, Thesis Director

_____________________________ Dr. Todd Tupper, Committee Member

_____________________________ Dr. Arndt Laemmerzahl, Committee Member

_____________________________ Dr. Ancha Baranova, Committee Member

_____________________________ Dr. Iosif Vaisman, Director, School of Systems Biology

_____________________________ Dr. Donna Fox, Associate Dean, Office of Student Affairs & Special Programs, College of Science

_____________________________ Dr. Peggy Agouris, Dean, College of Science

Date: _________________________ Spring Semester 2019
George Mason University
Fairfax, VA
Aspects of Herpetofaunal Diseases at Two Natural Areas in Maryland and Virginia

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University

By

Lauren D. Fuchs
Master of Science
George Washington University, 2011
Bachelor of Arts
George Washington University, 2009

Committee chair: Larry Rockwood, Professor, Chair
Department of Biology

Spring Semester 2019
George Mason University
Fairfax, VA
I would first and foremost like to thank my thesis committee members- Dr. Larry Rockwood, Dr. Todd Tupper, Dr. Arndt Laemmerzal and Dr. Ancha Baranova- for their support throughout the research and writing process. I am especially grateful to Dr. Todd Tupper, whose mentorship, encouragement (and patience) over the past four years has been invaluable to my academic and professional growth. I would also like to express my sincere appreciation to Dr. Christine Bozarth, Dr. David Fernandez, Susan Williams, and Robert Aguilar for their technical and logistical support both in the field and the lab throughout my research.

My research would not have been possible without the financial support of the Northern Virginia Community College Educational Foundation. I am very thankful for the opportunities they provided me, my colleagues and the many NVCC students that took part in these research projects. That said, I would also like to acknowledge the students, both at NVCC and George Mason, who assisted me in my research. A special thank you to Eva Lorentz who volunteered a great deal of her time to support me in the field and lab, and to Sarah Farinelli for her guidance during the writing process. Finally, I would like to express my profound gratitude to my mom, dad, sister and friends for their unfailing support and encouragement throughout my studies, research and writing. This achievement would not have been possible without them.
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
</tr>
<tr>
<td>List of Figures</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>1. Chapter I: Preface</td>
</tr>
<tr>
<td>2. Chapter II: A survey of the pathogenic fungus, Batrachochytrium dendrobatidis, at the Smithsonian Environmental Research Center, Anne Arundel County, Maryland</td>
</tr>
<tr>
<td>4. Chapter IV: An investigation of co-infection by Batrachochytrium Dendrobatidis and Ranavirus (FV3) in anurans of two natural areas in Anne Arundel County, Maryland and Fairfax County, Virginia, USA</td>
</tr>
<tr>
<td>5. Chapter V: Detection of Ophidiomyces ophidiicola at the Smithsonian Environmental Research Center and Huntley Meadows Park</td>
</tr>
<tr>
<td>6. Biography</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Number and proportion of Bd positives by species at the Smithsonian Environmental Research Center</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Proportion of Bd detections in anuran species sampled throughout Maryland and Virginia between 2008 and 2017</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Species sampled for Bd at Huntley Meadows Park</td>
<td>31</td>
</tr>
<tr>
<td>3.2 Sampling distribution and number and proportion of Bd detections per month</td>
<td>31</td>
</tr>
<tr>
<td>3.3 Multiple logistic regression output</td>
<td>31</td>
</tr>
<tr>
<td>3.4 Number and proportion of Bd detections across sexes, and correspondingly, by age class</td>
<td>32</td>
</tr>
<tr>
<td>3.5 Bd prevalence rates (% Bd positive) for studies conducted throughout Virginia and Maryland</td>
<td>32</td>
</tr>
<tr>
<td>4.1 Proportion of Bd and Ranavirus FV3 positive samples by species</td>
<td>46</td>
</tr>
<tr>
<td>4.2 Proportion of FV3 and Bd positive individuals grouped by sampling month</td>
<td>46</td>
</tr>
<tr>
<td>4.3 Proportion of FV3 and Bd positive individuals grouped by sex (and by default, age class) and ecological guild</td>
<td>47</td>
</tr>
<tr>
<td>6.1 Snake morphometrics</td>
<td>63</td>
</tr>
<tr>
<td>6.2 Oo prevalence by species</td>
<td>64</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Huntley Meadows Park, Fairfax County, VA</td>
<td>30</td>
</tr>
<tr>
<td>5.1.</td>
<td>Location of HMP snake capture locations</td>
<td>62</td>
</tr>
<tr>
<td>5.2.</td>
<td>Location of SERC snake capture locations</td>
<td>62</td>
</tr>
</tbody>
</table>
ABSTRACT

ASPECTS OF HERPETOFAUNAL DISEASES AT TWO NATURAL AREAS IN MARYLAND AND VIRGINIA

Lauren D. Fuchs, M.S.

George Mason University, 2019

Thesis chair: Dr. Larry Rockwood

Over the past several decades, amphibians and reptiles have been notably impacted by emerging infectious pathogens. Anuran populations have experienced significant morbidity and mortality events as the result of two pathogens in particular: *Batrachochytrium dendrobatidus* (*Bd*), and *Frog-Virus 3* (*FV-3*). Reptiles have also been threatened by infectious pathogens, namely, *Ophidiomyces ophidiicola* (*Oo*), which has been attributed to the declines of several snake populations. Here, I present the results of investigations on presence, prevalence and co-occurrence of *Bd* and *FV-3* in anurans, and the occurrence of *Oo* in snakes in Maryland (at the Smithsonian Environmental Research Center; SERC) and Virginia (at Huntley Meadows Park; HMP). Results from these investigations indicated that *Bd* is present in both Maryland (10.3%) and Virginia (34.3%). However, *FV-3* was not detected in either state. In our investigation of *Oo* in snakes of Maryland and Virginia, we found an overall infection rate of 55.7%. Our results demonstrate that infectious herpetofaunal pathogens are present at both of our study sites,
which emphasizes the need for ongoing disease monitoring at local and regional scales, and the administration of enhanced biosecurity protocols at these sites.
CHAPTER I

PREFACE

Biodiversity loss is often the result of complex interactions between a variety of biotic and abiotic stressors that may drive population declines. One major factor that has demonstrated a capacity to negatively influence biodiversity is infectious disease (Blaustein et al., 2018). Emerging infectious pathogens have been implicated in wildlife epidemics worldwide (Allender et al., 2015). The deleterious effects of these pathogenic agents have also become increasingly apparent among amphibians and reptiles (collectively, herpetofauna; Skerratt et al., 2007; Robert, 2010; Clark, 2011; Lorch et al., 2016). Compounding the impacts due to habitat loss, pollution, and other anthropogenic influences, the rise in these emerging infectious diseases represents a significant threat to herpetofaunal biodiversity both at a global and local level (Gibbons et al., 2000; North et al., 2015; Rosa et al., 2017).

ANURAN DISEASES:

Over the past several decades, amphibians have experienced globally-occurring mass mortality events attributed to two pathogens in particular: *Batrachochytrium dendrobatidis* (etiological agent of Chytridiomycosis) and Ranaviruses, specifically *Ranavirus* type-species Frog Virus 3 (hereafter FV 3; Chinchar, 2002; Fox et al., 2006; Lips et al., 2006; Haislip et al., 2011; Echaubard et al., 2016). Data reflecting the
distribution, prevalence and population-level impacts of these diseases on local amphibian populations are relatively limited, and improved disease monitoring efforts are warranted. The goal of our research was to assess the presence and prevalence of Bd and FV-3 in local anuran populations, thereby contributing to our limited understanding of these pathogens in the Mid-Atlantic region. This work was prompted by an observation of a potentially symptomatic Northern Watersnake (*Nerodia sipedon*) at the Smithsonian Environmental Research Center, and by a mass die off of Wood Frogs (*Lithobates sylvaticus*) just 18 km from Huntley Meadows Park (Fairfax County Park Authority, 2015; Fuchs et al., 2018).

The second, third and fourth chapters of this thesis present the results of a three-year investigation on *Bd* and FV-3 in anuran populations at two natural areas in Maryland and Virginia. Each of the three chapters consists of a manuscript that was published in the journal, *Catesbeiana*. Chapter two (Fuchs et al., 2017a) documents the presence and prevalence of *Bd* at the Smithsonian Environmental Research Center in Anne Arundel County, Maryland (38°53’17.41” N 76°33’15.52 W; Figure 2.1), where *Bd* has been previously confirmed (Tupper et al., 2016). The third chapter (Fuchs et al., 2017b) reports on the pathogen at Huntley Meadows Park in Fairfax County, Virginia (38°45’36.57” N - 77°05’44.13” W; Figure 5.1). Chapter four is an investigation of the co-occurrence of *Bd* and FV-3 at these same study sites. The results from this study were also published in *Catesbeiana* (Fuchs et al., 2018). The language (e.g. the use of the term “our” instead of “my”), citations, headers, tables, figures and references for these are presented in the format specified by this journal.
Infectious disease has also been identified as a threat to several reptile taxa, especially snakes (Todd et al., 2010). Since the early 2000s, many free-ranging snake populations have experienced often-severe declines attributable to a mycotic infection known as snake fungal disease (SFD; Clark et al., 2011; Allender et al., 2015). SFD can occur as a result of infection by a fungal pathogen known as *Ophidiomyces ophidiicola* (*Oo*; Allender et al., 2015; Paré and Sigler, 2016). Due to its relatively recent emergence (Burbrink et al., 2017), the host range and geographic distribution of this pathogen are still unclear (Guthrie et al., 2016).

Over the past decade, reports of SFD have become increasingly common, with cases of infection documented in at least 20 eastern states, including Maryland and Virginia (Allender et al., 2015; Guthrie et al., 2016; Tupper et al., 2015, 2018). The rising incidence of SFD poses an added challenge for snake conservation. Yet, despite growing reports of the disease, information on SFD in the Mid-Atlantic is still sparse, and increased efforts to monitor for the *Oo* pathogen are necessary. The main objective of our study was to assess the presence and prevalence of *Oo* at the Smithsonian Environmental Research Center and at Huntley Meadows Park. Like chapters two and three, this work was also developed in response to anecdotal observations of potentially symptomatic individuals at both sites (Tupper et al., 2015; 2018). Results from this study are currently in preparation for publication in the journal, *Amphibian & Reptile Conservation*, and are presented in the fourth chapter of this thesis. The language, formatting and citation style of chapter four follow the requirements of *Amphibian & Reptile Conservation.*

Environmental Research Center, Anne Arundel County, Maryland. Catesbeiana 37: 32-40.

CHAPTER II.

A SURVEY OF THE PATHOGENIC FUNGUS, BATRACHOCYTRIUM DENDROBATIDIS, AT THE
SMITHSONIAN ENVIRONMENTAL RESEARCH CENTER, ANNE ARUNDEL COUNTY,
MARYLAND

INTRODUCTION

Batrachochytrium dendrobatidis (Bd) is a pathogenic species of chytrid fungus that
produces flagellated, motile spores, which colonize keratinized epithelial cells in the skin
of adult amphibians, and keratinized mouthparts of larval amphibians (Rachowicz and
Vredenburg, 2004; Brutyn et al. 2012). It has been associated with declines and extirpations
in over 200 amphibian species (Lips et al. 2006). Susceptibility to, and outcomes of Bd
infection vary markedly both within and between species, ranging from no symptoms to
mortality (Beebee and Griffiths 2005; Briggs et al. 2010). These inconsistencies are
attributed to temperature (Berger et al. 2004), innate defenses (Harris et al. 2006;
Woodhams et al. 2007), habitat (Kriger and Hero 2007; Rowley and Alford 2007), and host
life history traits (Lips et al. 2003).

Although Bd is found in a wide range of habitats and climates (Kilpatrick et al.
2010), catastrophic declines associated with Bd typically occur in cool, wet, and thermally
consistent locations (Bielby et al. 2008; Murray et al. 2011; Berger et al. 2016). Such
decreases have been documented in Eastern Australia, Central America, and Europe (Berger
et al. 1998; Lannoo et al. 2011; Johnson and Speare, 2003). In North America, observed
declines have been restricted to the Western region of the United States (Longcore et al. 2007; Murray et al. 2009), with few *Bd*-related die-offs reported east of the Rocky Mountains (Petersen et al. 2016).

Studies in North America are generally sparse and opportunistic, showing inconsistencies in climatic determinants of *Bd* infectivity (Savage et al. 2011). Throughout the eastern United States, numerous studies (see Davidson and Chambers 2011; Huang and Wilson 2013; Lannoo et al. 2011; Longcore et al. 2007; Oullett et al. 2004; Peterson et al. 2016; Tupper et al. 2011) have identified the persistence of *Bd* in amphibians without associated population declines (Caruso and Lips 2013; Daszak et al. 2003; Muletz et al. 2014; Rothermel 2008). However, the mechanisms influencing the virulence of *Bd*, are poorly understood. A better understanding of its distribution and prevalence among amphibians is necessary to assess the potential threat of *Bd* on local amphibian populations (Daszak et al. 2003).

To the best of our knowledge, *Bd* data from the Mid-Atlantic are limited; there are only two prior *Bd* studies conducted in Maryland (Grant et al. 2008; Hossack et al. 2010), and none have focused solely on anurans. Here we assessed the prevalence of *Bd* in anuran species at the Smithsonian Environmental Research Center (SERC), in Anne Arundel County, Maryland. Our primary objective was to assess the prevalence of *Bd* among anurans, thus enhancing existing, but limited information on *Bd* in Maryland. We also aimed to determine if *Bd* was confined to anurans of particular ecological guilds (Kriger and Hero 2007; Longcore et al. 2007; Tupper et al. 2011).
METHODS

We opportunistically sampled for *Bd* at the Smithsonian Environmental Research Center (hereafter SERC; 38°53’17.41" N 76°33’15.52’ W), in Anne Arundel County, Maryland (for more about SERC see Tupper et al. 2016) between 27 March and 27 June 2014 and 2015. We hand captured (while wearing new nitrile gloves) anurans and assayed skin surfaces via methods described by Hyatt et al. (2007) using sterile dry swabs (no. MW113, Medical Wire and Equipment Company, Durham, NC). We placed skin swabs in 1.5 mL microcentrifuge tubes, which were then frozen until molecular analyses. We followed the Purification of Total DNA from Animal Tissues protocol (Qiagen® DNeasy Blood & Tissue Kit, Valencia, CA) to extract DNA. To detect *Bd*, we prepared a 20 μL PCR reaction with 10 μL Sso Advanced™ universal probes supermix (Bio-Rad, Hercules, CA), 200 nM each primer (ITS1-3Chytr and 5.8sChytr; Boyle et al. 2004), 250 nM MGB probe, and 2 μL of extracted DNA. We ran samples on a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA) at 95°C for 3 min, followed by 45 cycles of 95°C for 30-sec and 55°C for 45-sec. We used positive and negative controls in DNA extraction and PCR amplification. Our goal was to determine the presence (not infection intensity) of *Bd*. Therefore, only one standard concentration was required as a positive control. We conducted qPCR analyses in triplicate on each sample to confirm a positive result. We considered a sample positive if it began to fluoresce before 40 cycles of our PCR reaction on at least two occasions. We used a Fisher’s Exact test (Zar 2005) to assess differences in *Bd* detection rates between two broad ecological guilds of anurans:
terrestrial/arboreal and aquatic (Table 2.1; Tupper et al. 2011) in minitab version 17 (ww.minitab.com). All nomenclature corresponds with Crother (2012).

RESULTS

We opportunistically sampled 116 individuals across 11 species for Bd. Sixty-three (54.3 %) of the samples were collected in 2014 and 53 (45.7 %) were collected in 2015. Due to the opportunistic sampling scheme, sampling was not consistent between months and the monthly sampling distribution was not consistent between years. When pooled across years, five (4.3 %), 47 (40.5 %), 25 (21.6 %) and 39 (33.6 %) of the samples were collected in March, April, May and June, respectively. Seven of the 11 (63.6 %) species sampled tested positive for Bd, but only 12 of 116 (10.3 %) of the total samples contained Bd. Nine (75 %) of the positive detections were from 2014, and three (25 %) were collected in 2015. Six (50 %), three (25 %), and three (25 %) of the Bd positive samples were collected in May, June, and April, respectively. The largest proportion of detections (25%) occurred in the Pickerel Frog (Lithobates palustris) and Southern Leopard Frog (Lithobates sphenocephalus). The Eastern Cricket Frog (Acris crepitans) had the next largest detection rate (22 %). Bd was also detected in the American Bullfrog (Lithobates catesbeianus; 16.7 %) and Green Frog (Lithobates clamitans; 10.5 %). We also identified Bd in Cope’s Gray Treefrog (Hyla chrysoscelis) and American Toads (Anaxyrus americanus; < 1%). The Spring Peeper (Pseudacris crucifer), Eastern Spadefoot (Scaphiopus holbrookii), Wood Frog (Lithobates sylvaticus) and Gray Treefrog (Hyla versicolor) were all Bd negative.
(Table 2.1). Significantly more detections of *Bd* occurred in the aquatic guild (16.9%; N = 59) than in the terrestrial and arboreal guild (0.04%; N = 57; Fisher’s exact test *P* < 0.05).

DISCUSSION

Although we detected *Bd* in 63.6 % of species sampled, the detection rate across individuals was low (10.3 %), and we did not observe visual signs of chytridiomycosis, the diseased state as a result of *Bd* infection (Muths et al. 2008). Our results are similar to studies conducted throughout the eastern United States, which have documented *Bd* in a wide range of amphibian species generally absent of clinical signs of chytridiomycosis (Grant et al. 2008; Pullen et al. 2010), and without associated catastrophic declines (Lannoo et al. 2011; Longcore et al. 2007; Petersen et al. 2016; Rothermel et al. 2008). Our work is also similar to other studies in that *Bd* was primarily detected in aquatic species but was not restricted to fully aquatic species (Longcore et al. 2007; Pearl et al. 2007; Rodriguez et al. 2009; Tupper et al. 2011). However, our results differ in terms of detection rates: we found one of the lowest detection rates across anuran species in the eastern United States (Davidson and Chambers 2011; Huang and Wilson 2013; Lannoo et al. 2011; Longcore et al. 2007; Petersen et al. 2016; Rothermel et al. 2008; Tupper et al. 2011; Table 2.2), the lowest in Maryland and, with the exception of Augustine and Neff (2016), the lowest detection rates when compared to similar studies conducted throughout Virginia. These comparisons include sites at the nearby Chesapeake and Ohio National Historic Park, Montgomery County, Maryland, and Huntley Meadows Park, Fairfax County, Virginia (Davidson and Chambers 2011; Grant et al. 2008; Goodman and Ararso 2012;
Pullen et al. 2010; Hughey et al. 2014; Tupper et al. in progress). Results from Long Branch Nature Center, Arlington County, Virginia (Augustine and Neff 2016) must be interpreted cautiously, as the sample size was low (N = 25). In addition, sampling only spanned five genera and six species, with just three anuran species represented (N = 11).

Despite increased Bd sampling efforts in the eastern United States, certain areas still remain insufficiently surveyed (Olson et. al. 2013; GBDMP 2016). In addition to our study, only two other studies have investigated Bd in amphibians of Maryland (Grant et al. 2008; Hossack et al. 2010) and only Grant et al. (2008) sampled anurans. Grant et al. (2008) had a notably lower sample size (N = 53) than the present study, and only sampled three species (American Bullfrog, Pickerel Frog, and Green Frog) within a single genus (Lithobates). Therefore, our data add considerably to the understanding of Bd prevalence in Maryland across a wide range of anurans.

Although the presence of Bd throughout the eastern United States is well documented, it has yet to be associated with declines (Longcore et al. 2007; Grant et al. 2008; Pullen et al. 2010; Rothermel et al. 2008). Nevertheless, data implicate Bd as a primary source of certain dramatic amphibian declines worldwide (Berger et al. 1998; Collins and Crump 2009; Skerratt et al. 2007; Talley et al. 2015). The enigmatic nature of these declines stems from difficulties in demonstrating a causative link between disease and decline (Daszak et al. 2003). This difficulty is due to complex host-pathogen dynamics, and co-existing stressors (i.e. pollution, introduced species, increased UVB-radiation, and climate change) that may be implicated independently, or in conjunction with the pathogen (Beebee and Griffiths 2005). The extent to which each of these factors interacts with, and
compounds the effects of Bd at the individual, community, and population level is not thoroughly understood, and hypotheses explaining these interactions are controversial (Blaustein et al. 2011). Our ability to interpret these complex interactions, and identify the potential threat of Bd on local amphibian populations relies heavily on continued surveillance, both at new and existing locations. We therefore recommend continued Bd monitoring using heightened biosecurity protocols (VHS 2016) at SERC and throughout the region.
Table 2.1. Number and proportion of *Bd* detections by species at the Smithsonian Environmental Research Center. Superscript numbers following species are ecological guilds. 1 = terrestrial/arboreal, and 2 = aquatic.

<table>
<thead>
<tr>
<th>Species</th>
<th># Sampled</th>
<th>Bd Detections</th>
<th>% Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Bullfrog2</td>
<td>6</td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td>American Toad1</td>
<td>21</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>Cope's Gray Treefrog1</td>
<td>14</td>
<td>1</td>
<td>0.07</td>
</tr>
<tr>
<td>Eastern Cricket Frog1</td>
<td>18</td>
<td>4</td>
<td>0.22</td>
</tr>
<tr>
<td>Eastern Spadefoot1</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gray Treefrog1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Green Frog2</td>
<td>19</td>
<td>2</td>
<td>0.11</td>
</tr>
<tr>
<td>Pickerel Frog2</td>
<td>8</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>Southern Leopard Frog2</td>
<td>4</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>Spring Peeper1</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wood Frog2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2.2. Proportion of *Bd* detections in anuran species sampled throughout Maryland and Virginia between 2008 and 2017. A range for % *Bd* Positive indicates that data were presented as percentages per species and site. * = Bedford, Campbell, Craig, Giles, Lynchburg City, Montgomery and Richmond City Counties. ** = Buckingham, Charles City, and Henrico Counties. N = Sample size.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>N</th>
<th>% Bd Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augustine & Neff 2016</td>
<td>Arlington County, VA</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Davidson & Chambers 2011</td>
<td>Wise County, VA</td>
<td>41</td>
<td>14.6</td>
</tr>
<tr>
<td>Goodman & Ararso 2012</td>
<td>Prince Edward County, VA</td>
<td>103</td>
<td>7.8</td>
</tr>
<tr>
<td>Grant et al. 2008</td>
<td>Montgomery County, MD</td>
<td>53</td>
<td>17</td>
</tr>
<tr>
<td>Hughey et al. 2014</td>
<td>Throughout Western VA*</td>
<td>292</td>
<td>0-92</td>
</tr>
<tr>
<td>Present Study</td>
<td>Anne Arundel County, MD</td>
<td>116</td>
<td>10</td>
</tr>
<tr>
<td>Pullen et al. 2011</td>
<td>Throughout Central VA**</td>
<td>740</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Pullen, K. D., A. M. Best, and J. L. Ware. 2010. Amphibian pathogen *Batrachochytrium dendrobatidis* prevalence is correlated with season and not urbanization in central Virginia. Diseases of Aquatic Organisms 91: 9–16.

CHAPTER III.

DETECTION OF THE PATHOGENIC FUNGUS, BATRACHOCYTRIUM DENDROBATIDIS, IN ANURANS OF HUNTLEY MEADOWS PARK, FAIRFAX COUNTY, VIRGINIA

INTRODUCTION

The chytrid fungus, *Batrachochytrium dendrobatidis* (hereafter *Bd*), has been identified as a proximate driver of amphibian population declines and extinctions worldwide (Lambertini et al., 2016; Lips et al., 2006; Olson et al., 2013). The pathogen is now widespread across much of North America, demonstrating a highly heterogeneous spatial distribution (Lannoo et al., 2011). *Bd*-related declines have been documented in several western states (Arizona, California and Colorado; Bradley et al., 2002; Briggs et al., 2005; Muths et al., 2003). Portions of the southwest and the eastern United States have reported high prevalence of the pathogen, but without concomitant declines (Lannoo et al., 2011; Petersen et al., 2016).

Bd is a pathogenic mycotic species, which produces flagellated, motile spores that colonize keratinized epithelial cells in the skin of adult amphibians, and keratinized mouthparts of larval amphibians (Brutyn et al., 2012). Clinical manifestations of *Bd* infection reflect the diseased state known as chytridiomycosis. Hyperplasia and keratosis in the diseased state interfere with cutaneous respiration and osmoregulation, and can be lethal (Berger et al., 1998; Kilpatrick et al., 2010; Rachowicz et al., 2006; Voyles et al.,
Susceptibility to the pathogen, and effects of the infection vary both within and among species, with cases ranging from asymptomatic to fatal (Beebee and Griffiths, 2005; Briggs et al, 2010; Savage et al., 2011). This variation has been attributed to differences in innate defenses and host life-history traits (Harris et al., 2006; Lips et al., 2003; Woodhams et al., 2007). Habitat and climatic conditions have been shown to significantly influence the virulence of *Bd* infection, with lethal outbreaks of chytridiomycosis most commonly associated with cooler, wetter, and thermally consistent environmental conditions (Berger et al., 2004; Bielby et al., 2008; Kriger and Hero, 2007; Murray et al., 2011; Rowly and Alford, 2007; Savage et al., 2011).

It is thought that *Bd* may be endemic to many regions of North America, including the eastern United States, where the pathogen has been present since the 1960’s, and known to infect at least 48 amphibian species (Hughey et al., 2014; Lannoo et al., 2011; Longcore et al., 2007; Ouellet et al., 2005). In the Mid-Atlantic region, *Bd* has been shown to exist without associated declines (Goodman and Ararso, 2012; Grant et al., 2008; Hughey et al., 2014; Lannoo et al., 2011; Petersen et al., 2016; Pullen et al., 2010). Propagation of the fungus and/or virulence has been seemingly discouraged by local climatic conditions. However, synergistic interactions between a changing climate and a suite of anthropogenic stressors may function to alter infection dynamics, potentially inducing disease outbreaks and subsequent declines of local amphibian populations (Davidson et al., 2003; Longcore et al., 2007; Pounds et al., 2006). This latent threat highlights the need for long-term monitoring. Monitoring data are critical to identifying emerging patterns of *Bd* infectivity,
understanding its effect on local amphibian populations, and are integral to management of natural areas containing amphibifauna (Olson et al., 2013).

Information on the prevalence of Bd in anuran species throughout Virginia is relatively limited. Although prior studies suggest that Bd is widespread in the state (Hughey et al., 2014), there appear to be inconsistent trends in rates of infection, with overall prevalence (across anuran species) ranging from as low as 8% (central Virginia; Goodman and Ararso, 2012) to as high as 35% (Hughey et al., 2014). Systematic Bd surveys have also been conducted in areas of western, southern and central Virginia (Goodman and Ararson, 2012; Gratwicke et al., 2011; Hughey et al., 2014; Pullen et al., 2010). To the best of our knowledge, only one other study has surveyed for Bd in Northern Virginia (Augustine and Neff, 2016). However, because of the low sample size (N = 25), and minimal representation of anuran species (three species; N = 11), supplemental data is necessary to more accurately assess Bd prevalence in this region of Virginia. Our primary objective was to determine whether Bd is present in this portion of the state, and if so, how its prevalence compares to other regions within Virginia and throughout the Mid-Atlantic region. Data from our study will aid in the development and implementation of disease management protocols on local and regional scales.

METHODS

We collected samples at Huntley Meadows Park in Fairfax County, Virginia (38°45’36.57” N -77°05’44.13” W). Huntley Meadows Park is approximately 577 ha and, other than a green corridor on its southeast side, is predominately surrounded by suburban
developments (Figure. 3.1). Huntley Meadows Park is comprised of a large central wetland that is hydrologically connected to the majority of the park’s other smaller wetlands, which range from early-successional, herbaceous open-canopy wetlands to later-successional hardwood swamps.

Between 26 March and 5 June 2016, we opportunistically sampled anurans throughout Huntley Meadows Park. Adhering to biosecurity standards outlined by the Virginia Herpetological Society (VHS, 2016), we hand-captured anurans, and swabbed the skin surface with sterile dry swabs (no. MW113, Medical Wire and Equipment Company, Durham, NC). We stored the swabs in 1.5 mL microcentrifuge tubes and kept them frozen until molecular analyses. We followed the Purification of Total DNA from Animal Tissues protocol (Qiagen®, Valencia, CA) to elute DNA from each swab. We prepared a PCR master mix containing 10 μL Sso Advanced™ universal probes supermix (Bio-Rad, Hercules, CA), 200 nM of each primer (ITS1-3Chytr and 5.8sChytr; Boyle et al. 2004), 250 nM MGB probe, and sterile water. We combined 18 μL of the master mix and 2 μL of eluted DNA in a 96-well PCR plate. Positive and negative controls were included for both the DNA elusion and amplification. The positive control required a single, standard concentration as we were testing for presence of the Bd pathogen, and not zoospore load. To detect Bd, we used a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Samples were exposed to 95°C for three minutes, then run through 45 cycles of 95°C for 30-sec and 55°C for 45-sec. We performed three rounds of PCR per sample. Samples were considered positive if they fluoresced prior to the 40th cycle of the PCR reaction on at least two occasions.
We used multiple logistic regression to determine which variables were significant predictors of *Bd* infection. The predictors were day of year, sex, ecological guild, species and site. The sex variable was an ordinal variable consisting of three categories: male, female, juvenile. Therefore, it also was a proxy for age (adult/subadult). The ecological guild variable was also ordinal and consisted of two categories, terrestrial/arboreal (Eastern American Toad, Cope’s Gray Treefrog Green Treefrog, Spring Peeper) and aquatic (American Bullfrog, Green Frog, Southern Leopard Frog). We assessed goodness-of-fit and predictive ability of the logistic regression model with Hosmer-Lemeshow and Somers’ D statistics, respectively. We then used descriptive statistics, chi-square tests, and independent sample t-tests to further examine variables identified as significant by multiple logistic regression analysis. Zar (2009) was used to guide statistical analyses. Minitab version 17 was used for all statistical analyses (www.minitab.com), and ArcGIS version 10.3 (www.ersi.com) and DivaGIS version 7.5.0 (www.diva-gis.org) were used to create maps. Nomenclature follows Crother (2012).

RESULTS

We collected 100 samples between 26 March and 5 June 2016. While we were unable to sample equally among species, we sampled approximately evenly between ecological guilds. We collected the majority of samples in April and May (Tables 3.1 and 3.2). Multiple logistic regression indicated that sex (age); \(Z = 3.11; \ P < 0.05\), ecological guild \(Z = 3.02; \ P < 0.05\) and day of year \(Z = -2.42; \ P < 0.05\) were strong predictors of infection when considered together with each other and species, and site \(G = 48.1; \ df = 5;\)
Species and site were not indicated as significant. We identified significantly higher infection rates in adult male and female anurans ($\chi^2 = 7.6; df = 2; P < 0.05; \text{Table 3.4}$) of the aquatic ecological guild ($\chi^2 = 17.9; df = 1; P < 0.001 \text{ see Table 3.1}$) earlier in the season ($\chi^2 = 25.0; df = 3; P < 0.001; \text{see Table 3.2}$). Of the 99 testable samples, 34 were positive, yielding an overall infection rate of 34.3%.

DISCUSSION

To the best of our knowledge, our work is only the second study to document Bd in anurans of Northern Virginia. Because information on Bd in this region (in anurans) are so limited, our data are particularly valuable—especially considering that we were able to increase the sample size and expand upon the number of species sampled. Our findings, coupled with results from other Virginia studies, confirm that Bd is prevalent throughout the state (Davison and Chambers, 2011; Goodman and Ararson, 2012; Gratwicke et al., 2011; Hughey et al., 2014; Lannoo et al., 2011; Petersen et al., 2016; Pullen et al., 2010). With the exception of Hughey et al. (2014), the overall infection rate in anurans from our study (34.3%; Table 3.5) was higher than all other studies conducted in Virginia (Davison and Chambers, 2011; Goodman and Ararson, 2012; Gratwicke et al., 2011; Lannoo et al., 2011; Petersen et al., 2016; Pullen et al., 2010) and neighboring Maryland (Fuchs et al., 2017; Grant et al., 2008).

Interestingly, the overall infection rate reported in our study also falls among the highest relative to all studies conducted throughout the entire eastern United States (see
Petersen et al., 2016 and Rothermel et al., 2008 for exceptions). Huntley Meadows Park, a natural depression surrounded by densely populated suburban development (dgif.virginia.gov), is the principle education park for Prince William, Fairfax, and Arlington Counties, and it is host to over 200,000 visitors annually (Kathleen O’Shea, pers. comm). These factors may expose the park’s wildlife to a range of anthropogenic stressors, such as pollution (herbicides pesticides, fossil fuel runoff, siltation), introduced predators (Northern Snakehead *Channa argus*; FOHMP, 2017), human interaction, and noise (Beebee and Griffiths, 2005; Blaustein et al., 2012; Pullen et al., 2008). Exposure to anthropogenic stressors can reduce immune function in hosts and consequently increase disease prevalence (Bruno et al., 2003; Carey et al., 1999; Daszak et al. 1999, 2001; Hoverman et al., 2011; Rohr et al., 2008). It is possible that anthropogenic stressors could have contributed to the relatively high rate of infection found in our study. However, further inquiry would be necessary to assess that statement.

Multiple logistic regression analysis indicated that three variables contributed significantly to infection: day of year, sex (age class), and ecological guild. We found *Bd* to be more prevalent in earlier months of sampling. This finding parallels various temperate regions in situ studies that show infection rates declining as the season progresses and warms (Hughey et al., 2014; Kinney et al., 2011; Longcore et al., 2007; Muths et al., 2008; Petersen et al., 2016). This trend is likely because *Bd* produces zoospores (in vitro) between 4 and 25°C and its pathogenicity declines when temperatures are above 23°C (Berger et al., 2004; Lamirande and Nichols, 2002; Piotrowski et al., 2004; Woodhams et al., 2003).
Timing of sampling may have influenced our finding of lower infection rates among juveniles and metamorphs, in comparison to both male and female adult anurans. Sampling for subadults was greater during periods when metamorphosis and dispersal occurred (see Wright and Wright, 1949 and http://www.virginiaherpetologicalsociety.com/). Thus, 87% of our juvenile samples were from June (a warmer month that would likely yield fewer Bd positive samples) and predominantly from Spring Peeper (85%), a species that has often demonstrated lower Bd infection rates than other anurans (Fuchs et al., 2017; Longcore et al., 2007; Rothermel et al., 2008; Tupper et al., 2011).

We found Bd to be more prevalent in aquatic species (53.8% overall, with the highest infection rate in Southern Leopard Frog) than in terrestrial/arboreal species (13%). Similar patterns in infectivity rates across ecological guilds have previously been reported (Kriger and Hero, 2007; Longcore et al., 2007; Tupper et al., 2011). Water is an effective medium for transmission of Bd zoospores (Kolby et al., 2015), and it is thought that the lower degree of thermal variability in aquatic environments, relative to terrestrial environments, may be critical to the pathogen’s ability to more readily infect aquatic or semi-aquatic amphibians (Chatfield et al., 2012; Kriger and Hero, 2007; Moffitt et al., 2015; Weldon et al., 2004). Although Bd is more prevalent in aquatic species, it is not confined to aquatic guilds, as we detected it in the American Toad, Cope’s Gray Treefrog, Green Treefrog and Spring Peeper. Additionally, numerous studies have found it in terrestrial/arboreal species (Berger et al., 2005; Daszak et al., 2003; Lannoo et al., 2011; Longcore et al., 2007; Oullett et al., 2005; Rothermel et al., 2008).
Previous studies conducted throughout the Mid-Atlantic region indicate a widespread occurrence of \textit{Bd} in multiple anuran species without associated signs of chytridiomycosis (Fuchs et al., 2017; Grant et al., 2008; Pullen et al., 2010) and without related population declines (Petersen et al. 2016; Longcore et al. 2007; Lannoo et al. 2011; Rothermel et al. 2008). While we also did not observe symptoms of chytridiomycosis, it is thought that cases of the disease may be increasing locally or invading previously uninhabited regions (Daszak et al., 2003). Climate change may shift environmental conditions in favor of the pathogen. Consequently, the potential for interactions between the host and pathogen, coupled with a suite of anthropogenic factors, may influence outcomes of infection in unexpected ways (Davidson et al., 2003; Longcore et al., 2007; Pounds et al., 2006). We therefore recommend continued disease monitoring in the region, especially where the pathogen is known to exist, and in locations where host immunity may be compromised by anthropogenic stressors. Huntley Meadows Park is one such location, and serves as a critical refuge for wildlife inhabiting increasingly urbanized Northern Virginia. We encourage VHS members to follow Huntley Meadows Park biosecurity protocols to decrease the potential for disease transmission.
Figure 3.1. Huntley Meadows Park. Blue icons represent sampling locations. We swabbed multiple individuals at each sampling location. We only presented the location without a +/- symbol because we found both Bd positive and negative individuals at most sampling locations.
Table 3.1. Species sampled for Bd at Huntley Meadows Park. 1 = terrestrial/arboreal ecological guild. 2 = aquatic ecological guild.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>N</th>
<th># Positive</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern American Toad1</td>
<td>Anaxyrus americanus</td>
<td>13</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>American Bullfrog2</td>
<td>Lithobates catebeianus</td>
<td>11</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Cope's Gray Treefrog1</td>
<td>Hyla chrysoscelis</td>
<td>9</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Green Frog2</td>
<td>Lithobates clamitans</td>
<td>19</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Green Treefrog1</td>
<td>Hyla cinereal</td>
<td>11</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Southern Leopard Frog2</td>
<td>Lithobates sphenocephalus</td>
<td>23</td>
<td>18</td>
<td>78</td>
</tr>
<tr>
<td>Spring Peeper1</td>
<td>Pseudacris crucifer</td>
<td>13</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 3.2. Sampling distribution and number and proportion of Bd detections per month.

<table>
<thead>
<tr>
<th>Month</th>
<th>N</th>
<th># Positive</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>9</td>
<td>8</td>
<td>88.9</td>
</tr>
<tr>
<td>April</td>
<td>22</td>
<td>13</td>
<td>59.1</td>
</tr>
<tr>
<td>May</td>
<td>52</td>
<td>11</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Table 3.3. Multiple logistic regression output. Coef = coefficient

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of Year</td>
<td>-0.042</td>
<td>0.016</td>
</tr>
<tr>
<td>Sex (age)</td>
<td>1.359</td>
<td>0.002</td>
</tr>
<tr>
<td>Guild</td>
<td>2.629</td>
<td>0.002</td>
</tr>
<tr>
<td>Species</td>
<td>0.230</td>
<td>0.248</td>
</tr>
<tr>
<td>Site</td>
<td>0.133</td>
<td>0.168</td>
</tr>
</tbody>
</table>
Table 3.4. Number and proportion of *Bd* detections across sexes, and correspondingly, by age class.

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th># Positive</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>41</td>
<td>13</td>
<td>31.7</td>
</tr>
<tr>
<td>Subadult</td>
<td>15</td>
<td>1</td>
<td>6.7</td>
</tr>
<tr>
<td>Male</td>
<td>39</td>
<td>18</td>
<td>46.2</td>
</tr>
</tbody>
</table>

Table 3.5. *Bd* prevalence rates (% *Bd* positive) for studies conducted throughout Virginia and Maryland.

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>N</th>
<th>% Bd Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuchs et al., 2017</td>
<td>Anne Arundel County MD</td>
<td>116</td>
<td>10</td>
</tr>
<tr>
<td>Davidson and Chambers, 2011</td>
<td>Wise County VA</td>
<td>41</td>
<td>14.6</td>
</tr>
<tr>
<td>Goodman and Ararso, 2012</td>
<td>Central VA</td>
<td>103</td>
<td>7.8</td>
</tr>
<tr>
<td>Grant et al., 2008</td>
<td>C&O National Park, MD</td>
<td>53</td>
<td>17</td>
</tr>
<tr>
<td>Hughey et al., 2014</td>
<td>Western VA</td>
<td>292</td>
<td>35</td>
</tr>
<tr>
<td>Pullen et al., 2011</td>
<td>Central VA</td>
<td>740</td>
<td>14.1</td>
</tr>
<tr>
<td>Tupper et al., 2017</td>
<td>Fairfax County VA</td>
<td>99</td>
<td>34.3</td>
</tr>
</tbody>
</table>

Kinney VC, J. L. Heemeyer, A. P. Pessier, and M. J. Lannoo. 2011. Seasonal pattern of

Pullen, K. D., A. M. Best, and J. L. Ware. 2010. Amphibian pathogen *Batrachochytrium dendrobatidis* prevalence is correlated with season and not urbanization in central Virginia. Diseases of Aquatic Organisms 91: 9–16.

the amphibian chytrid fungus *Batrachochytrium deondrobatidis* in the southeastern USA. Diseases of Aquatic Organisms 82: 3–18.

CHAPTER IV.
AN INVESTIGATION OF CO-INFECTION BY *Batrachochytrium dendrobatidis* AND
Ranavirus (FV3) IN ANURANS OF TWO NATURAL AREAS IN ANNE ARUNDEL COUNTY,
MARYLAND AND FAIRFAX COUNTY, VIRGINIA, USA

INTRODUCTION

Since the 1980s, amphibian populations have experienced global population
declines and extinctions (Skerratt et al., 2007; Robert, 2010). Enigmatic events, including
the emergence and spread of infectious diseases, are associated with many of these recent
debines (Daszak et al., 2003; Stuart et al., 2004; Bielby et al., 2008; Olson et al., 2013).
Globally-occurring mass mortality events of amphibians have been associated with two
pathogens in particular: the chytrid fungus, *Batrachochytrium dendrobatidis* (*Bd*), and
ranaviruses (specifically *Ranavirus* type species Frog Virus 3 [hereafter FV3]; Chinchar,
2002; Fox et al., 2006; Lips et al., 2006; Haislip et al., 2011; Echaubard et al., 2016). Both
Bd and the ranaviruses are listed as notifiable pathogens by the World Organization for
Animal Health (OIE, 2008; Echaubard et al., 2016).

Bd and ranaviruses are both known to occur globally, and across broad geographic
and host ranges (Schock et al., 2010; Bancroft et al., 2011; Miller et al., 2011). Data
indicate that *Bd* is widespread and often highly prevalent in the mid-Atlantic United States
and that it often occurs without concomitant population declines (Longcore et al., 2007;
Grant et al., 2008; Rothermel et al., 2008; Pullen et al., 2010; Lannoo et al., 2011; Petersen et al., 2016; Fuchs et al., 2017; Tupper et al., 2017). Conversely, data on FV3 in mid-Atlantic amphibians are limited. However, FV3 infections in this region have been documented, and have also been associated with localized mortality events and declines (Petranka et al., 2003; Harp and Petranka, 2006; Schock et al., 2009; Davidson & Chambers, 2011; Hoverman et al., 2012; Fairfax County Park Authority, 2015; Duffus et al., 2015). Although deficiencies in FV3 data may be due to sparse sampling, it may also reflect the disease’s biology. FV3 is highly virulent and can cause >90% mortality in some cases (Green et al., 2002). This virulence can make sub-lethal infections difficult to detect, as deceased frogs may be less conspicuous and/or available for sampling (Harp and Petranka, 2006).

Bd and *Ranavirus* FV3 have been found to co-occur and co-infect individual hosts in various habitats (Whitfield et al., 2013; Warne et al., 2016; Rosa et al., 2017). Throughout North America, co-occurrence of *Bd* and FV3 has been reported in a number of aquatic communities. However, concurrent infections within an individual host has not yet been demonstrated *in situ* (Fox et al., 2006; Hoverman et al., 2012; Souza et al., 2012; Whitfield et al., 2013). Although data on concurrent infection are limited, it is suspected that the pathogens interact synergistically, promoting greater infection intensity and disease progression within the host due to the initial immunocompromising-effects from the primary invading pathogen (Garyfer et al., 2012; Warne et al., 2016). The objective of our study was to determine whether infection by these pathogens (both *Bd* and FV3) was occurring concurrently in anurans at two natural areas in Virginia and Maryland where *Bd*
is known to occur (see Fuchs et al., 2017; Tupper et al., 2017). We also aimed to provide baseline data on rates of FV3 infection across anuran species of the mid-Atlantic that could be incorporated into a growing body of literature on FV3 infection.

METHODS

We collected samples at the Smithsonian Environmental Research Center (hereafter SERC; 38°53’17.41”N 76°33’15.52 W) in Anne Arundel County, MD (for more about SERC, see Tupper et al., 2016), and at Huntley Meadows Park (hereafter HMP; 38°45’36.57” N - 77°05’44.13” W) in Fairfax County, Virginia (for more about HMP, see Tupper et al., 2017) between 13 March and 25 September 2016. Following Virginia Herpetological Society biosecurity protocols (VHS, 2016), we opportunistically hand-captured and sampled anurans at various locations throughout each study site. To sample for FV3, we chose a minimally-invasive method that has previously been used to detect the virus (Driskell et al., 2009; Gray et al., 2009; Pessier and Mendelson, 2010; Miller et al., 2015). This method consisted of collecting epithelial cells of the oropharyngeal region by circling the swab along the tongue, roof and sides of the mouth, and the pharynx (San Diego Zoo ICR, 2016). All swabs were stored in 1.5 mL microcentrifuge tubes and kept frozen until molecular analyses could be performed. To sample for Bd, we swabbed several skin surfaces (following methods of Hyatt et al., 2007) using a sterile dry swab (no. MW113, Medical Wire and Equipment Company, Durham, NC).
DNA was eluted from each swab using the Purification of Total DNA from Animal Tissues protocol (Qiagen®, Valencia, CA). To assay for FV3, we prepared a PCR master mix which contained 10µL SSo Advanced™ universal probes supermix (Bio-Rad, Hercules, CA), 2µL eluted DNA, 0.6 µL forward primer, 1.8µL reverse primer (Mao et al., 1996), 0.5 µL MGB probe, and 5.1µL sterile water, for a 20µL reaction total (Brunner and Collins, 2009). We included DNA elusion and amplification positive and negative controls with each PCR run. We amplified the DNA using a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA). We ran samples at 95°C for 15 minutes, followed by 40 cycles of 95°C for 15 seconds, 54°C for 30 seconds, and 72°C for 15 seconds. We performed at least two rounds of PCR on each sample; samples with inconsistent results were run through a third cycle. We considered any sample that fluoresced prior to the 40th cycle of the PCR reaction on at least two occasions to be positive. The Bd PCR techniques followed methods described by Boyle et al. (2004). For a more detailed description of these methods, see Fuchs et al. (2017) and Tupper et al. (2017).

To determine the total rates of infection across both sites, we calculated the proportion of Bd and FV3 positive samples for five grouping variables: anuran species, sampling month, ecological guild, and sex and age classes (see Tupper et al., 2017). Statistical analyses were completed in Minitab version 18 (www.minitab.com).

RESULTS
We collected samples from a total of 100 anurans at HMP, and 88 anurans at SERC between 13 March and 25 September 2016. We sampled for FV3 in 170 anurans; all samples tested negative for the virus. Of the 186 testable Bd samples, 59 tested positive for an overall infection rate of 31.7% (Table 4.1). We found that the highest Bd infection rates occur in March and April (59.3% and 59.1%, respectively; Table 4.2), in male adults (43.7%; Table 4.3), and in Southern Leopard (Lithobates sphenoecephalus; 66.7%) and Pickerel (Lithobates palustris; 63.6%; Table 4.1) Frogs. Anurans sampled in the aquatic guild resulted in a higher percent of Bd positive individuals (40.3%) than in the terrestrial/arboreal guild (17.9%; Table 4.3).

DISCUSSION

Ranavirus infections, including FV3, have been documented in Maryland and Virginia (Davidson and Chambers, 2011; Hamed et al., 2013; Scott et al., 2016), however, FV3 was not detected in any of our samples. Our results reflect one of two possibilities, either FV3 was not present at either location, or the pathogen was present, but we were unsuccessful in detecting it due to our sampling techniques. In order to limit stress to the animal, we chose the least intrusive sampling method shown to detect FV3, (oropharyngeal swabbing; see Driskell et al., 2009; Pessier and Mendelson, 2010; Miller et al., 2015; San Diego Zoo ICR, 2016). Despite being less invasive, swabbing is also less reliable than lethal techniques, such as liver tissue sampling, and may produce more false negatives than other non-lethal techniques, such as toe and tail clips (Miller et al., 2008; Gray et al., 2012;
Forzán et al., 2017). Therefore, it is possible that even if an anuran was carrying the virus, our sampling method may not have been sensitive enough to detect it.

Though *Ranavirus* has low host specificity, larvae and metamorphs of certain species show far greater susceptibility to infection than others (Daszak et al., 1999; Brunner et al., 2004; Robert et al., 2005; Robert, 2010; Lesbarréres et al., 2012; North et al., 2015). For instance, larval and recently metamorphosed Wood Frogs (*Lithobates sylvaticus*), Gopher Frogs (*Lithobates capito*) and Eastern Spadefoot Toads (*Scaphiopus holbrookii*) are among the most susceptible to FV3 (Goodman and Araraso, 2009; Haislip et al., 2011; Hoverman et al., 2011; Miller et al., 2011; Lesbarréres et al., 2012; Earl and Gray, 2014; Forzán et al., 2017). Because anurans in our study were captured opportunistically, we were unable to adequately sample the most susceptible species. While oropharyngeal swabbing can effectively detect *Ranavirus* in tadpoles (Gray et al., 2012; Kolby et al., 2015), this method would likely damage oropharyngeal tissues in smaller anurans. Therefore, we chose to restrict our sampling to metamorphosed anurans.

Although we did not detect FV3 at either of our sampling sites, *Ranavirus* has been documented in both Virginia and Maryland (Davidson and Chambers, 2011; Hamed et al., 2013; Smith et al., 2016). Additionally, FV3 has been confirmed as the likely cause of a recent Wood Frog tadpoles die-off at the nearby Old Colchester Park and Preserve in Fairfax County, VA (Fairfax County Park Authority, 2015). We therefore suggest continued FV3 monitoring at HMP and SERC and recommend that future studies focus sampling efforts on larval Wood Frog and Eastern Spadefoot Toad (while minimizing harm to anurans). We also suggest continued monitoring for *Bd*, which is already known to be
prevalent at both locations (Fuchs et al., 2017; Tupper et al., 2017). Our study confirms that *Bd* remains prevalent at both SERC and HMP, with an overall infection rate that is among the highest in the region (31.72%; see also Hughey et al., 2014). Notably, a post-hoc analysis of data collected over a three-year period (2014-2016) revealed a nearly-20% increase in the infection rate of *Bd* at SERC (10.3%-29.2%; Tupper and Fuchs, unpublished data; Fuchs et al., 2017). Continued monitoring of both pathogens will facilitate more informed management decisions, and will allows us to better understand the effects of their interactions within anuran hosts.
Table 4.1. Proportion of *Bd* and *Ranavirus* FV3 positive samples by species. AMTO = Eastern American Toad (*Anaxyrus americanus*); BUFR = American Bull Frog (*Lithobates catesbeianus*); CGTF = Cope’s Gray Tree Frog (*Hyla chrysoscelis*); CRFR = Eastern Cricket Frog (*Acris crepitans*); GRFR = Green Frog (*Lithobates clamitans*); GTFR = Green Tree Frog (*Hyla 46inereal*); PIFR = Pickerel Frog (*Lithobates palustris*); SLFR = Southern Leopard Frog (*Lithobates sphenopehalus*); SPPE = Spring Peeper (*Pseudacris crucifer*); WOFR = Wood Frog (*Lithobates sylvaticus*). * = Aquatic guild. Species without an asterisk indicates terrestrial/arboreal guild.

<table>
<thead>
<tr>
<th>Species</th>
<th>N (FV3)</th>
<th>% FV3 Positive</th>
<th>N (Bd)</th>
<th>% Bd Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMTO</td>
<td>26</td>
<td>0</td>
<td>26</td>
<td>26.9</td>
</tr>
<tr>
<td>BUFR*</td>
<td>26</td>
<td>0</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>CRFR*</td>
<td>13</td>
<td>0</td>
<td>17</td>
<td>5.9</td>
</tr>
<tr>
<td>CGTF</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>16.7</td>
</tr>
<tr>
<td>GRFR*</td>
<td>34</td>
<td>0</td>
<td>33</td>
<td>36.4</td>
</tr>
<tr>
<td>GTFR</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>8.3</td>
</tr>
<tr>
<td>PIFR*</td>
<td>10</td>
<td>0</td>
<td>11</td>
<td>63.6</td>
</tr>
<tr>
<td>SLFR*</td>
<td>31</td>
<td>0</td>
<td>33</td>
<td>66.7</td>
</tr>
<tr>
<td>SPPE</td>
<td>5</td>
<td>0</td>
<td>16</td>
<td>6.3</td>
</tr>
<tr>
<td>WOFR*</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>170</td>
<td>0</td>
<td>186</td>
<td>31.7</td>
</tr>
</tbody>
</table>

Table 4.2. Proportion of FV3 and *Bd* positive individuals grouped by sampling month.

<table>
<thead>
<tr>
<th>Month</th>
<th>N (FV3)</th>
<th>% FV3 Positive</th>
<th>N (Bd)</th>
<th>% Bd Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCH</td>
<td>22</td>
<td>0</td>
<td>27</td>
<td>59.3</td>
</tr>
<tr>
<td>APRIL</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>59.1</td>
</tr>
<tr>
<td>MAY</td>
<td>75</td>
<td>0</td>
<td>74</td>
<td>27.0</td>
</tr>
<tr>
<td>JUNE</td>
<td>12</td>
<td>0</td>
<td>24</td>
<td>12.5</td>
</tr>
<tr>
<td>JULY</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>20.0</td>
</tr>
<tr>
<td>AUG</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>SEPT</td>
<td>29</td>
<td>0</td>
<td>29</td>
<td>24.1</td>
</tr>
</tbody>
</table>
Table 4.3. Proportion of FV3 and *Bd* positive individuals grouped by sex (and by default, age class) and ecological guild.

<table>
<thead>
<tr>
<th>Sex/Guild</th>
<th>N (FV3)</th>
<th>% FV3 Positive</th>
<th>N (Bd)</th>
<th>% Bd Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>66</td>
<td>0</td>
<td>64</td>
<td>26.6</td>
</tr>
<tr>
<td>Juvenile</td>
<td>34</td>
<td>0</td>
<td>51</td>
<td>23.5</td>
</tr>
<tr>
<td>Male</td>
<td>70</td>
<td>0</td>
<td>71</td>
<td>43.7</td>
</tr>
<tr>
<td>Aquatic</td>
<td>114</td>
<td>0</td>
<td>119</td>
<td>40.3</td>
</tr>
<tr>
<td>Terrestrial/arboreal</td>
<td>56</td>
<td>0</td>
<td>67</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Pullen, K. D., A. M. Best, and J. L. Ware. 2010. Amphibian pathogen Batrachochytrium dendrobatidis prevalence is correlated with season and not urbanization in central Virginia. Diseases of Aquatic Organisms 91: 9–16.

CHAPTER V

DETECTION OF OPHIDIOMYCES OPHIDIICOLA AT TWO NATURAL AREAS IN ANNE ARUNDEL COUNTY, MARYLAND AND FAIRFAX COUNTY, VIRGINIA

Introduction

Snake fungal disease (SFD) has emerged as a growing threat to snakes throughout much of North America (Dolinski et al. 2014; Allender et al. 2015; Lorch et al. 2016; Paré and Sigler 2016), and has been associated with widespread morbidity and mortality in numerous species (Guthrie et al. 2016; Lorch et al. 2016; Stengle 2018). The disease is attributed to Ophidiomyces ophidiicola (Oo), a mycotic pathogen known only to infect snakes (Allender et al. 2015; Paré and Sigler 2016). Clinical manifestations of infection typically include scabs, crusty scales, superficial pustules, subcutaneous nodules, dysecdysis, and ocular cloudiness (Dolinski et al., 2014; McBride et al., 2015; Tetzlaff et al. 2015). SFD infections are generally chronic and mortalities likely result from secondary complications, such as impaired sensory capabilities or altered thermoregulatory behaviors (Lorch et al. 2015, 2016). Since 2006, SFD has become increasingly documented, with cases of infection reported in at least 20 eastern states including Maryland, Virginia, and West Virginia (Allender et al. 2015; Guthrie et al. 2016; Tupper et al. 2015, 2018, WVDNR). Despite growing reports of SFD throughout the Mid-Atlantic, systematic studies are limited. Compounded by the impacts of habitat loss, pollution, and other
anthropogenic influences, the rising incidence of SFD poses an added challenge for snake conservation, underscoring the significance of ongoing disease monitoring (Franklinos et al. 2017; Kucherenko et al. 2018). The primary objective of this study was to assess the presence and prevalence of *Oo* at two natural areas in Maryland and Virginia. Results of this study contribute to our understanding of the distribution and prevalence of SFD in the region.

Materials and Methods

We opportunistically sampled for *Oo* in snakes from Huntley Meadows Park (HMP; 38°45′36.57″ N -77°05′44.13″ W; Fig. 1) in Fairfax County, Virginia between 22 April and 21 June, 2018, and at the Smithsonian Environmental Research Center (SERC; 38°53′17.41″N 76°33′15.52 W; Fig. 2) in Anne Arundel County, Maryland between 31 March and 9 October, 2018. We hand-captured (wearing sterile nitrile gloves) and visually inspected snakes for symptoms of SFD (Allender et al. 2011; Clark et al. 2011). Then, using a modified protocol developed by Allender et al. (2016) we collected skin cells with sterile dry swabs (no. MW113, Medical Wire and Equipment Company, Durham, NC), from all craniofacial and ventral body scales. We swabbed each region five times. For symptomatic snakes, we also swabbed lesions, pustules, nodules or displaced scales (Allender et al. 2011; 2016). We stored swabs in sterile 1.5 mL microcentrifuge tubes and kept them frozen until molecular analyses. Prior to release, we determined the snake’s sex via cloacal probing (see Blanchard and Finster 1933). We also measured (snout-to-vent and total length [cm]), weighed (g), and photographed each snake to help differentiate
similarly sized conspecifics. To limit SFD transmission, we employed aseptic techniques and followed appropriate biosecurity protocols (see Rzadkowska et al. 2016; VHS 2016).

To assay for Oo, we eluted swabbed DNA using the Purification of Total DNA from Animal Tissues Protocol (Qiagen®, Valencia, CA). Following the methods described by Allender et al. (2015), we combined 2.5 µL of eluted DNA with 12.5 µL Sso Advanced™ universal probes supermix (Bio-Rad, Hercules, CA) 1.25 µL of a combined target-specific primer (OphioITS-F and OphioITS-R)-probe, and water, creating a 25 µL reaction. We amplified the DNA via qPCR using a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA). DNA was amplified using the following cycling parameters: 1 cycle at 50°C for 2 minutes, 1 cycle at 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds, and 60°C for 60 seconds, followed by a final cycle at 72°C for 10 minutes. We used positive and negative controls in DNA extraction and amplification and performed up to five rounds of qPCR for each sample. A sample was considered positive if at least three of the replicates had a lower cycle threshold (Ct) than the lowest detected standard dilution of the positive control (Allender et al., 2016).

We plotted sampling sites within our study areas (indicating locations of positive and negative samples; Figures 5.1 and 5.2) with ESRI ArcMap (version 10.6). Snake nomenclature corresponds with Crother et al. (2017). Tables and descriptive statistics were completed with Microsoft Excel for Office 365 (Microsoft Corp., Washington, USA), and Minitab v. 16 (Minitab Inc., Pennsylvania, USA).
Results

We captured and swabbed 60 snakes (35 from HMP and 25 from SERC) across nine species (Table 5.1). Northern Watersnake (*Nerodia sipedon*) comprised the largest proportion (N = 26; 43.3%) of our captures. Eastern Ratsnake (*Pantherophis alleghaniensis*; N = 10), Common Ribbonsnake (*Thamnophis sauritus*; N = 9) and Eastern Wormsnake (*Carphophis amoenos*; N = 7) were also well-represented, comprising 16.7%, 15% and 11% of the total snake sample, respectively. Northern Black Racer (*Coluber constrictor*; N = 2), Eastern King snake (*Lampropeltis getula*; N = 1), Northern Ring-necked snake (*Diadophis punctatus*; N = 1), Eastern Gartersnake (*Thamnophis sirtalis*; (N = 2), and Dekay’s Brownsnake (*Storeria dekayi*; N = 2) were all sparsely represented. We detected *Oo* in 33 snakes and in a shed skin of a Northern Black Racer, yielding an overall infection rate of 55.7%. More than half of the positive samples (55.9%) were from a single species—Northern Watersnake. Of the nine species sampled, Northern Watersnake had the highest infection rate (73.1%), followed by Eastern Ratsnake (70%). Northern Black Racer, Eastern Wormsnake, and Common Ribbonsnake were positive in 66.7%, 28.6%, and 11.1% of samples, respectively. We only sampled one Eastern Kingsnake and Northern Ring-necked snake; both were positive. Dekay’s Brownsnake was positive in one of two samples and Eastern Gartersnake was the only species that did not test positive for *Oo*. Twenty-five of the 35 (71.4%) symptomatic snakes tested positive for *Oo* and nine of the 26 (34.6%) asymptomatic individuals were *Oo* positive (Table 5.2). Prevalence varied between study locations, with 34.6% of snakes testing positive at HMP and 84.6% at SERC.
Discussion

Although *Oo* has previously been documented in Maryland and Virginia (Guthrie et al. 2016; Tupper et al. 2018), our work is one of only two studies (see Guthrie et al. 2016) to systematically investigate SFD in these states. In Maryland, observations of fungal dermatitis have been reported from the Smithsonian Environmental Research Center (SERC) since 2014 (Tupper et al. 2015), with *Oo* recently being confirmed as the etiological agent of a dermal infection in Northern Watersnake (Tupper et al. 2018). Our results add four new species (Eastern Wormsnake, Northern Black Racer, Northern Ring-necked snake, and Eastern Ratsnake) to the pathogen’s documented host range in Maryland, which previously included Northern Watersnake (Tupper et al. 2018) and Timber Rattlesnake (*Crotalus horridus*; unconfirmed; Tupper et al. 2017). In eastern Virginia, Guthrie et al. (2016) documented *Oo* in four (symptomatic) species: Northern Watersnake (*N* = 3), Rainbow Snake (*Farancia erytrogramma*; *N* = 1), Northern Black Racer (*N* = 2), and Brown Watersnake (*Nerodia taxispilota*; *N* = 2). We add four new host species to the list of *Oo* positive species occurring in Virginia: Eastern Kingsnake, Eastern Ratsnake, Dekay’s Brownsnake and Common Ribbonsnake).

Our overall infection rate of 57.4% falls among the highest (except see McKenzie et al. 2018) across the eastern and midwestern United States (Smeenk et al. 2016; Allender et al. 2016). Prevalence of *Oo* throughout the region appears to be highly variable, with rates of infection as low as 0% and 4.9% in Ohio and Michigan, respectively (Smeenk et al. 2016; Allender et al. 2016), and up to nearly 62% in eastern Kentucky (McKenzie et al. 2018).
We interpret these rates cautiously, however, taking into consideration the variation in methodologies between studies (McCoy et al. 2017; Grisnik et al. 2018; Hileman et al. 2018; McKenzie et al. 2018). For instance, the number of sterile dry swab applicators used per snake has been shown to influence detection accuracy, with use of only one applicator greatly increasing the probability of obtaining false-negative results (Hileman et al., 2018). Our results support this concept, with 16 (47.1%) of the 34 positive snakes testing positive for *Oo* in only one of two swabs (nine from the craniofacial swab only, seven from the body swab only). Underestimation of infection may also occur when diagnostic tests are limited to visibly symptomatic snakes (see Guthrie et al. 2016). While clinical signs have been associated with a higher probability of PCR-positive results, studies have also demonstrated that approximately 12% of snakes without clinical signs will test positive for *Oo* (Allender et al. 2016; Bohuski et al. 2015; Hileman et al. 2018; McKenzie et al. 2018). Our data support prior work as only 34.6% of our positive samples were from asymptomatic snakes. Detection of *Oo* in asymptomatic snakes has been attributed to several possible factors. In some cases, symptomatic snakes may be misclassified if clinical signs are subtle and overlooked during visual inspection (Grisnik et al. 2018; Hileman et al. 2018). Snakes that are in fact asymptomatic may either be in the early stages of infection, or potentially asymptomatic carriers of infection (Lorch et al. 2016).

It is still unclear how susceptibility and severity of infection differs between species (Grisnik et al. 2018), but species composition of our sample may partly explain both the prevalence and relative high proportion of positive asymptomatic snakes in our study. We detected *Oo* in eight of the nine species sampled in this study, which was not surprising
given that each of these species has previously tested positive for the pathogen in the eastern and mid-western United States (Lorch et al. 2016; Persons et al. 2017; Grisnik et al. 2018; McKenzie et al. 2018). However, because of low sample sizes in certain species it was difficult to properly assess how each of these species contributed to the overall infection rate. We found Oo to be most prevalent in Northern Watersnake, with an infection rate of 73%. This species represented nearly 43% of our total sample and thus had a strong influence on overall prevalence (55.7%). Prior studies with similar proportions of aquatic specie have also demonstrated relatively high infection rates among Northern Watersnakes, and other species with aquatic affiliations. However, this trend in infectivity may in part reflect the habitat preferences of the pathogen (Lorch et al. 2016; McKenzie et al. 2018), rather than a particular susceptibility to the pathogen. Further work is needed to elucidate these relationships.

Results from our study confirm that Oo is present and relatively prevalent in both Maryland and Virginia, and that infection is often accompanied by clinical manifestations consistent with SFD. Currently, efforts to monitor Oo are limited. The geographic distribution and host range of the pathogen are still largely unknown (Burbrink et al. 2017), and it is thought that SFD may be more widely distributed than these documented cases suggest (USGS, 2018). It has been proposed that (even when collected systematically) biased detection methods may result in underestimations of prevalence within a population (Grisnik et al. 2018; Hileman et al., 2018). This potential for inaccurate assessments highlights the need for more systematic and standardized sampling efforts and diagnostic protocols. Based on the increasing number of reports of SFD throughout the eastern United
States, we suspect \textit{Oo} is highly infectious and pathogenic. We therefore suggest increased efforts to sample for and monitor \textit{Oo} throughout the Mid-Atlantic region. Additionally, it is crucial that enhanced biosecurity protocols be implemented to limit disease transmission in the region.
Fig. 5.1. (Left). Location of HMP snake capture locations. Black markers = all positive samples; white markers = all negative samples; gray markers = positive and negative samples.

Fig. 5.2. (Right). Location of SERC snake capture locations. Black markers = all positive samples; white markers = all negative samples; gray markers = positive and negative samples.
Table 5.1. Snake morphometrics. KG = kilograms, CM = centimeters, M = male, F = female, NS = not sexed, SVL = snout-to-vent length. TL = total length, MIN = minimum, MAX = maximum, \bar{X} = mean SE = standard error.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>N</th>
<th>WEIGHT (KG)</th>
<th></th>
<th>SVL (CM)</th>
<th></th>
<th>TL (CM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>\bar{X}</td>
<td>SE</td>
<td>MIN</td>
</tr>
<tr>
<td>EASTERN WORMSNAKE</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>0.005</td>
<td>0.007</td>
<td>0.006</td>
<td>0</td>
<td>14.8</td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>0.005</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>15.8</td>
</tr>
<tr>
<td>NORTHERN BLACK RACER</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0.008</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>30.2</td>
</tr>
<tr>
<td>NORTHERN RING-NECKED SNAKE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>-</td>
<td>16.1</td>
</tr>
<tr>
<td>EASTERN KINGSNAKE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>-</td>
<td>55.4</td>
</tr>
<tr>
<td>NORTHERN WATERSNAKE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>0.08</td>
<td>0.5</td>
<td>0.3</td>
<td>0.05</td>
<td>43</td>
</tr>
<tr>
<td>M</td>
<td>17</td>
<td>0.01</td>
<td>1</td>
<td>0.3</td>
<td>0.06</td>
<td>22.5</td>
</tr>
<tr>
<td>NS</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EASTERN RATSNAKE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
<td>0.07</td>
<td>87.8</td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.6</td>
<td>0.1</td>
<td>96.8</td>
</tr>
<tr>
<td>NS</td>
<td>1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>-</td>
<td>48.8</td>
</tr>
<tr>
<td>DEKAY'S BROWNSNAKE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>-</td>
<td>16.2</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>COMMON RIBBONSNAKE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>0.08</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>50.2</td>
</tr>
<tr>
<td>M</td>
<td>6</td>
<td>0.006</td>
<td>0.3</td>
<td>0.1</td>
<td>0.04</td>
<td>26.7</td>
</tr>
<tr>
<td>NS</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>50.8</td>
</tr>
<tr>
<td>EASTERN GARTERSNAKE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>44</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>-</td>
<td>45.3</td>
</tr>
</tbody>
</table>
Table 5.2. Prevalence by species. S/+ = symptomatic and positive, A/+ = asymptomatic and positive, S/- = Symptomatic and Negative.

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>Pos</th>
<th>Prevalence (%)</th>
<th>Overall Prevalence (%)</th>
<th>S/+</th>
<th>A/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Wormsnake</td>
<td>7</td>
<td>2</td>
<td>28.6</td>
<td>5.9</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Northern Black Racer</td>
<td>3</td>
<td>2</td>
<td>66.7</td>
<td>5.9</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Northern Ring-Necked Snake</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>2.9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Eastern Kingsnake</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>2.9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Northern Watersnake</td>
<td>26</td>
<td>19</td>
<td>73.1</td>
<td>55.9</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Eastern Ratsnake</td>
<td>10</td>
<td>7</td>
<td>70</td>
<td>20.6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Dekay’s Brownsnake</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>2.9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Common Ribbonsnake</td>
<td>9</td>
<td>1</td>
<td>11.1</td>
<td>2.9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Eastern Gartersnake</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>34</td>
<td>-</td>
<td>55.7</td>
<td>25</td>
<td>9</td>
</tr>
</tbody>
</table>

Lauren D. Fuchs graduated from Ward Melville High School, East Setauket, New York, in 2005. She received her Bachelor of Arts from The George Washington University in 2009, and her Master of Science from The George Washington University in 2011. She was employed as a coach and Aquatics Director in Washington, DC for four years, and has worked as a volunteer researcher at Huntley Meadows Park, the Smithsonian Environmental Research Center and Northern Virginia Community College since 2016.