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Abstract 

 One area under investigation in the field of neuroscience is the link between object 

perception and neural activity in visual cortical areas of the human brain. By investigating the 

electrical potentials from the ventral temporal cortical surface in humans, the Stanford University 

study selected for this paper sought to collect sufficient information for spontaneous and near-

instantaneous identification of a subject’s perceptual state. The brain signal data collection 

technique used by the researchers was electrocorticography (ECoG), using ECoG arrays placed 

on the subtemporal cortical surface of seven epilepsy patients. ECoG is an invasive electrogram 

method, requiring access to the surface of the brain, which can be applied to measure brain 

signals in response to specific stimuli. Using publicly available human ECoG recording data 

previously collected and made publicly available, this paper investigates visual object processing 

in the human brain. The data are taken from a study where seven epilepsy patients were shown 

house and face images in quick succession. We use those data and filter, process, and plot 

selected data to investigate the correct identification of the stimuli. We discovered that the 

incorrect stimuli matches are driven by variance in the human brain activity corresponding to the 

same set of stimuli. Better understanding of the visual processing capabilities of the human brain 
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could lead to developments in machine learning, as well as generate recommendations for future 

data collection in human visual object processing.  

 

1. Introduction 

Epilepsy is the fourth most common 

neurological disorder in the United 

States [6]. It is associated with 

unpredictable seizures of variable 

severity and can lead to other health 

problems. A person of any age can suffer 

from epilepsy [10].  

Epilepsy neuronal activity is most 

commonly captured by electro-

encephalography (EEG) since it is non-

invasive and relatively inexpensive [14] 

but can also be recorded by electro-

corticography (ECoG), which is a related 

modality. Using either method, epilepsy 

seizure activity appears as rapid spiking 

waves. 

ECoG is an invasive method to 

record brain signals. The electrodes are 

placed directly on the surface of the 

cerebral cortex, which allows ECoG to 

identify faster and smaller nuclei of 

brain activity. This can be accomplished 

at higher spatial and temporal 

resolutions than EEG [1]. EEG is a 

traditional and widely-used method for 

recording brain signals, while ECoG has 

been gaining popularity in clinical 

settings for investigating cortical 

phenomena [5].  

One area of neuroscience that has 

been researched throughout the years is 

the link between object perception and 

neural activity in visual cortical areas of 

the human brain. One subset of this area 

is figure-ground segregation. Previous 

studies have suggested that figure-

ground segregation is dependent on 

feedback loops between lower and 

higher areas of the visual cortex 

[3,7,11,12]. Figure-ground separation is 

one paradigm that can be considered 

useful in the investigation of the link 

between object perception and neural 

activity in visual cortical areas. One 

study investigated the figure-ground 

separation neural activity in mice [13]. 

There have been additional studies into 

this neural link in visual cortical areas 

that reveal feedback loops as playing a 

key role in visual object perception [4]. 
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2. Materials and Methods 

2.1. Experimental Protocols 

Researchers at Stanford University 

implanted electrodes on the brains of 

seven epileptic patients and then 

presented them with a basic image 

viewing task. The task involved 

differentiating between faces and houses 

in order to ascertain the spontaneous and 

near-instantaneous identification of a 

subject’s perceptual state [8,9]. 

The researchers sought to gather 

sufficient data to develop methods to 

predict the occurrence, timing and type 

of visual stimulus. They evaluated both 

broadband changes in brain signals and 

event-related potentials (ERPs) [8,9]. 

2.2. Data Collection 

Data Set: Miller, Kai J and Ojemann, 

Jeffrey G. (2015). Data and analyses for 

"Spontaneous Decoding of the Timing 

and Content of Human Object 

Perception from Cortical Surface 

Recordings Reveals Complementary 

Information in the Event-Related 

Potential and Broadband Spectral 

Change". Stanford Digital Repository. 

Available at: 

http://purl.stanford.edu/xd109qh3109 [8] 

Ethics Statement: All patients 

participated in a purely voluntary 

manner, after providing informed written 

consent, under experimental protocols 

approved by the Institutional Review 

Board of the University of Washington 

(#12193). All patient data was 

anonymized according to IRB protocol, 

in accordance with HIPAA mandate. 

These data originally appeared in the 

manuscript “Spontaneous Decoding of 

the Timing and Content of Human 

Object Perception from Cortical Surface 

Recordings Reveals Complementary 

Information in the Event‐Related 

Potential and Broadband Spectral 

Change” published in PLoS 

Computational Biology in 2015 [8]. 

The ECoG arrays were placed on the 

subtemporal cortical surface in order to 

record electrical potential data from the 

ventral temporal cortical surface [8,9]. 

The face-house discrimination task 

involved the presentation of 50 house 

pictures and 50 face pictures that were 

presented for 400ms per picture in each 

of the three experimental runs, for a total 

exposure to 300 visual stimuli. The 

patients were asked to verbally report a 

simple stimulus, such as a house, in 

http://purl.stanford.edu/xd109qh3109
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order to ensure the patient’s 

concentration on the task runs. The 

images utilized were grayscale pictures 

of faces and houses (luminance- and 

contrast-matched) [8,9]. 

2.3. Data Processing 

We used MATLAB (Mathworks, 

Natick, MA) for data processing. We 

processed the researchers’ data, which 

was available in the MATLAB .mat file 

format. We reviewed the analyses from 

the researchers’ manuscript, available in 

the MATLAB .m file format, and then 

produced our own scripts.  

A 12th order lowpass digital 

Butterworth filter with cutoff frequency 

of 10% of the sampling rate was applied 

to all the patients’ data in order to select 

a few sets of patient data that had the 

least random high amplitude peaks or 

troughs (i.e., greater than eight standard 

deviations).  

3. Results 

3.1. Analysis 

We investigated the first task runs of 

the Patients CA (age 31, male), JA (age 

37, male) and WC (age 32, male). 

From the processed ECoG data 

shown in the figures, some patterns can 

be observed. During the sessions, all 

patients showed brain activity peaks 

during pre-post task runs, basic face and 

house stimulus discrimination task, and 

interstimulus intervals. Great variation in 

patterns of brain activity response to 

visual stimuli was recorded for both face 

and house images. High amplitudes in 

brain wave activity were observed in 

both periods of visual stimulus and 

interstimulus intervals. 

3.2. Limitations 

This author did not collect the 

experimental data herself, so she is not 

knowledgeable of all the proceedings 

during the data collection sessions. In 

addition, patient privacy laws do not 

allow her to have more data about the 

epileptic patients other than their ages 

and genders. 

 ECoG can collect brain activity data 

at higher spatial and temporal 

resolutions than EEG [1]. However, that 

results in limited brain areas to 

investigate and greater variance in data 

due to the high data collection rates (e.g., 

10,000 Hz). 
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4. Discussion 

Overall plots of the testing of the 

patients can be viewed in Figure 1. There 

were three task runs, each with interstimulus 

interval data collected. The same set of three 

task runs were presented to each of the 

Patients CA, JA and WC. 

 

 
Figure 1. Each patient was presented with 

three task runs. 

 Figure 2 takes a closer look at the 

order of the different images presented in 

the same ten-second interval, between 5 to 

10 seconds after the start of the task run, for 

those three patients. The first two electrodes 

for each patient were selected for the 

following figure. Both the amplitudes and 

shapes of the brain activity varied for each 

patient.  

 
Figure 2. Face and house images presented 

to each patient between 5 seconds and 15 

seconds into the first task run. The different 

colors indicate the different electrodes – red 

and blue for the house image, pink and 

black for the face image (labelled in the 

legends as well). 

 

 The interstimulus brain activity for 

those same images presented in the same 

ten-second time period, between 5 to 10 
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seconds after the start of the task run, for 

each of the three patients can be viewed in 

Figure 3. The interstimulus interval data in 

blue shows brain activity when patients were 

not being presented with visual stimuli; the 

brain waves were of relatively high 

amplitude. 

 
Figure 3. All the various activity periods for 

5 seconds and 15 seconds into the first task 

run.  

 

 The responses of five different 

electrodes during the presentation of the first 

house image for each of the three patients is 

shown in Figure 4. Both the amplitudes and 

shapes of the brain activity varied for each 

patient.  

 

 
Figure 4. Each patient’s brain activity when 

presented with the first house image. All five 

selected electrodes are plotted in a different 

color, as indicated by the legends. 

 

 

 In addition, the amplitude and shape 

of each patient’s brain activity response 

pattern varied greatly for the presentation of 

the first two house images (Figure 5). 
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Figure 5. Each patient’s brain activity when 

presented with two houses within one second 

of each other. 

 

 

 The responses of five different 

electrodes during the presentation of the first 

face image for each of the three patients is 

shown in Figure 6. Similar to Figure 4, both 

the amplitudes and the shapes of the brain 

activity response varied for each patient.  

 

 
Figure 6. Each patient’s brain activity when 

presented with the first face image. 

 

 Similar to Figure 5, each patient’s 

brain activity response pattern varied greatly 

for the presentation of the first two face 

images (Figure 7). Note the great change in 

amplitude for Patient CA. 
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Figure 7. Each patient’s brain activity when 

presented with two face images within 2 

seconds of each other. 

 

 Figure 8 displays and overview of 

each patient’s brain activity when presented 

with the face images within the first 100 

seconds of the task runs, which highlights 

the differing amplitudes of the brain activity 

response to the face stimuli. Again, five 

electrodes were selected to be plotted. 

 
Figure 8. An overview of each patient’s 

brain activity when presented with the face 

images within the first 100 seconds of the 

task runs. 

 

 Figure 9 displays and overview of 

each patient’s brain activity when presented 

with the face images within the first 100 

seconds of the task runs, which highlights 

the differing amplitudes of the brain activity 

response to the face stimuli. Again, five 

electrodes were selected to be plotted. 
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Figure 9. An overview of each patient’s 

brain activity when presented with the house 

images within the first 100 seconds of the 

task runs. 

 

5. Conclusion 

 EEG is a commonly used and well-

established method of collecting brain signal 

data. On the other hand, ECoG has been 

growing in popularity in clinical settings for 

investigating cortical phenomena due to its 

higher spatial and temporal resolution. 

However, ECoG is much more invasive than 

EEG and costs significantly more. 

 One aspect of cortical phenomena 

that ECoG can investigate is the link 

between object perception and neural 

activity in visual cortical areas of the human 

brain. One subset of this area is figure-

ground segregation, for both animal and 

human subjects.  

 This paper is a review of a 

previously published basic image viewing 

task that was presented to seven epilepsy 

patients in order to assess the object 

perception in their visual cortical areas using 

ECoG. We investigated the data sets 

belonging to Patients CA, JA and WC and 

we concluded that their data showed a great 

variety in different brain activity, both shape 

and amplitude, for different patients seeing 

the same set of images. When comparing 

brain activity to only house images or only 

face images, there could be significant 

differences in amplitude.  

 In addition, brain recovery data was 

also recorded during interstimulus intervals. 

That interstimulus interval data showed the 

most variance in the data. In general, the 

amplitudes of the interstimulus interval data 

were much greater than the amplitudes of 

the brain waves that correspond to the 

responses to the face and house images. The 

greater amplitude is in accordance with the 
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differing amplitudes of alpha, beta, gamma, 

delta and theta brain waves that correspond 

to the categories of brain activity [16]; 

higher amplitude signifies lower level of 

brain activity during interstimulus intervals. 

 The Stanford researchers 

investigated whether or not the event-related 

broadband (ERBB) and event-related 

potential (ERP) provided enough useful 

information to determine the stimulus 

presented. Our plots in the previous section 

displayed a great variety of reactions to the 

same sets of stimuli, while the Stanford 

researchers concluded that stimuli could be 

categorized and identified reliably 96% of 

the time by using either ERBB or ERP. The 

4% of stimuli not accurately matched by 

their model could be attributed to the 

variance in the ECoG data observed by us 

[8,9]. 
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